Energy, fuel, and automotive engineering

Find out how our solutions can advance your knowledge of batteries, fluid dynamics, fossil fuels, fuel cells, and lubricants

カタログダウンロード

Want to know how our analysis methods can support your energy, fuel, and automotive engineering research? Whether you’re a student, a researcher, or a professor, we’ve put together links to examples of our solutions in batteries, fluid dynamics, fossil fuels, fuel cells, and lubricants.

The materials and analytical equipment involved overlap with applications in Chemistry and Applied ChemistryMaterials Science and Engineering, and Geological Sciences, Minerals and Mining – so feel free to check those pages for more information! Method abbreviations are explained at the bottom of this page.

Batteries research

Battery technology is a ‘hot topic’ – and involves research in many areas. This research can cover everything from charge storage and transfer and the synthesis of new battery materials, to modeling and testing battery designs and processing and upscaling battery production. Below, we’ve put together a selection of typical examples of our battery research solutions for battery material measurement. Take a look to discover more!

Batteries Research

Method

Sample

Application Note Title (Link)

Battery cathode manufacture and research - Elemental composition

XRD

Lithium nickel manganese cobalt oxide (Li-NMC)

What XRD configuration shall one use to analyze battery cathode materials? 

Battery cathode manufacture - Elemental composition

EDXRF

Lithium nickel manganese cobalt oxide (Li-NMC)

Elemental composition analysis of Nickel-Manganese-Cobalt cathodes and their precursors materials using Epsilon 4 ED-XRF spectrometer

Battery cathode manufacture - Elemental composition

WDXRF

Lithium nickel manganese cobalt oxide (Li-NMC)

Elemental composition analysis of Nickel-Manganese-Cobalt cathodes and their precursor materials using Zetium WDXRF

Battery research - Elemental composition

XRD

Graphite

Quality control: Graphitization degree and orientation index in graphite anode materials

Battery research - Overview

LD, XRF, XRD

PEM fuel cells (PEMFCs)

Characterization of PEM Fuel Cell Electrocatalysts 

Battery manufacture - particle size analysis

LD

LiFePO4, graphite

Battery manufacturing: Reliable, adaptable particle sizing using the Mastersizer 3000+

Battery manufacture - particle size analysis

LD

LiFePO4, graphite

Battery manufacturing: Reliable, adaptable particle sizing using the Mastersizer 3000+

Battery manufacture - particle size and shape

MDRS

Carbon electrode materials, binder

The impact of electrode particle size and shape on battery slurry viscosity

Battery manufacture - particle size

LD

Carbon (milling)

On-line particle sizing of carbon for electrode production

Battery manufacture - particle size and shape

MDRS

Graphite particles

The Influence of Particle Shape on the Characteristics of Coating Films for Battery Electrodes

Battery manufacture - particle size and shape

MDRS

Graphite

Exploring the effect of carbon microstructure on lithium-ion battery performance

Battery manufacture - cathode material analysis

XRF

LiFePO4 (LFP)

Elemental composition analysis of LiFePO₄ cathode materials using XRF

Battery materials - particle size analysis

LD

Lithium cobalt oxide and lithium-ion phosphate, Electrolytic Manganese Dioxide (EMD),

Characterization of Battery Materials using Laser Diffraction Particle Size Analysis

Battery technology - overview

Various

The role of analytical technologies in optimizing lithium-ion battery materials

Analytical toolkit for the optimization of battery electrode materials - whitepaper

Battery technology - battery integrity

XRD-CT

Zn-MnO2 alkaline batteries

Computed tomography on alkaline batteries

Battery technology – in-operando crystal phase analysis

XRD

Batteries in pouch cells. LiNMC coated on Al (cathode), graphite coated on Cu

High-quality in operando X-ray diffraction analysis of pouch bag lithium-ion batteries

Fluid dynamics

Several areas of engineering involve studying fluids and sprays – for instance, gas and liquid injection are important features of engine design. Our droplet size analysis instruments can be used to test features such as nozzle design. Find out more below!

Fluid Dynamics

Method

Sample

Application Note Title (Link)

Fuel Injectors - droplet size

LD

Fuel sprays from different injectors

Characterization of fuel injectors using high speed laser diffraction droplet size measurements

Fossil fuels

As we navigate the transition away from fossil fuels, researchers are continuously exploring ways to use and re-use them more effectively. This can cover areas including:

  • Power engineering
  • Automotive engineering
  • Chemical and petrochemical engineering
  • Chemistry
  • Recycling
  • Environment
  • Mining
  • Minerals engineering


We’ve put together a few application examples of our fossil fuel research solutions – take a look to learn more!

Fossil Fuels

Method

Sample

Application Note Title (Link)

Biodiesel blends - concentration

UV/Vis/NIR/ SWIR

Biodiesel-diesel blends: Methyl esters of five different oils — soybean oil, canola oil, palm oil, waste cooling oil, and coconut oil, highway and off-road diesels

Predicting the Concentration and Specific Gravity of Biodiesel-Diesel Blends Using Near Infrared Spectroscopy

Biofuel - elemental composition

XRF

Waste

Analysis of a wide range of alternative fuel materials using a single calibration method

Biofuels, mixtures - trace elements

XRF

Sulfur in fuels, biofuels, and mixtures

Zetium - Oil-Trace: Analysis of sulfur in fuels, biofuels and mixtures using a mineral oil calibration

Catalytic cracking - residual elements

XRF

Cl in fresh, regenerated, and spent alumina- supported catalysts

Zetium - The analysis of total chloride in alumina-supported catalysts by WD XRF according to UOP 979

Catalytic cracking - sample preparation

SPE

Fluid Catalytic Cracking (FCC) Catalysts - residue in petroleum: Ni, Va, Si, Al, Na, Ca,

Dissolution of Fuel Oil Using Borate Fusion for ICP-OES Analysis in Accordance with ASTM D 5184, IP377 and IP501

Coal - phase identification and quantification

XRD-C

Quartz(SiO2), kaolinite​(Al2Si2O5(OH)4), calcite(CaCO3), dolomite​(CaMg(CO3)2, Siderite(FeCO3), anatase(TiO2)

Analysis of coal and related materials by XRD

Coal - sample preparation for ICP

SPE

Coal, Coal Ash, Coal Fly Ash

Characterization of Coal, Coal Ash and Coal Fly Ash using Borate Fusion for ICP Analysis

Coal - elemental analysis

XRF

Na2O, MgO, Al2O3, SiO2, P2O5, S, K2O, CaO, TiO2, MnO, Fe2O3, SrO, and BaO in unashed coal samples

Analysis of inorganic major and minor compounds in un-ashed coal samples prepared as pressed powder

Diesel - trace elements

XRF

Silicon (Si), Sulphur (S), and Chlorine (Cl) in diesel

Accurate elemental analysis of low silicon, sulfur and chlorine content in petroleum products and automotive fuels

Gasoline - lead content

XRF

Lead in Gasoline

Zetium - Analysis of low concentrations of lead in gasoline according to ASTM D5059-07 test method C

Gasoline - nanobubbles

NTA

Hydrogen nanobubbles in gasoline

Nanobubble Applications and Characterization by Nanoparticle Tracking Analysis

Gasoline - trace elements

XRF

Phosphorous in fuels

Zetium - Analysis of low-level phosphorus in gasoline

Gasoline and diesel – Low-level sulfur content

XRF

Sulfur, petroleum

Analysis of low-level sulfur in petroleum products in accordance with ISO 20884:11 and ASTM D2622-10

Gasoline and diesel - sulfur content

XRF

Sulfur in car fuels

EPA Tier 3 Compliant Analysis of Ultra Low Sulfur Fuels

Fuel cells

Fuel cell technology is a growing area. Lots of the current research around fuel cell materials lies within Inorganic Chemistry, so check out that page for more application examples. Otherwise, enjoy exploring the information on our fuel cell research solutions below!

Fuel Cells

Method

Sample

Application Note Title (Link)

Electrocatalysts Used in Fuel Cells

XRD, XRF, LD

Vulcan XC-72 carbon black

Characterization of Electrocatalysts Used in PEM Electrolyzers and Fuel Cells

Hydrogen storage materials - performance

XRD-C

Lanthanum pentanickel (LaNi5), Ammonia borane (NH3BH3)

High-pressure and high-temperature studies of hydrogen storage materials

Catalytic Ink for electrodes – crystallographic structure, particle size and agglomeration 

XRD-C, LD, DLS, ELS 

Pt nano particles supported in Carbon particles and agglomerates

Analysis of Catalytic Ink for Proton Exchange Membrane Fuel Cells (PEMFC’s)

Lubricants

The study of lubricants is important for automotive engineering, chemical and petrochemical engineering, chemistry, recycling, and the environment. For instance, studying used lubricants can be a diagnostic for wear in machine parts. Below, we’ve collected a few examples of how our analytical solutions can support lubricant research. Check them out to discover more!

Lubricants Research

Method

Sample

Application Note Title (Link)

Lubricants - wear metals content

XRF

Mg, Al, Si, P, S, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Sn, Ba, and Pb in unused and used lubricating oils

Oil-Trace: accurate elemental analysis of additives and wear metals in fresh and used lubrication oils

Lubricants- additives and wear metals content

XRF

Na, Mg, Al, Si, P, S, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Sn, Ba, and Pb in unused and used lubricating oils

Analysis of additives and wear metals in used lubricating oils using Oil-Trace

Lubricants - additives content

XRF

Mg, P, S, Cl, Ca, Cu, Zn, and Ba in unused lubricating oil

Analysis of additives in unused lubricating oils according to ASTM D4927-10 and ASTM D6443-04 (2010)

Automotive oils - identification

XRF

Lubricating oils

Material identification by FingerPrint

Automotive oils - recycling

XRF

S, Cl in waste oil

Analysis of S and CI in waste oil using an Ag-anode X-ray tube

Oils - base fluids

GPC

Polyalfaolefins (PAO), (PAO6, PAO40, PAO100) in THF

Comparing multi-detector GPC and APC for polyalphaolefin analysis

略語解説

当社の製品と技術については、製品ページを参照してください。以下では、当社の装置で測定された特性、測定名とその略称を簡単に参照できます。各メソッドをクリックすると、詳細が表示されます。 

略語

メソッド名

装置

測定された特性

DLS

動的光散乱法(DLS)

ゼータサイザー

分子サイズ、流体力学的半径RH、粒子サイズ、粒度分布、安定性、濃度、凝集

ELS

電気泳動光散乱

ゼータサイザー

ゼータ電位、粒子電荷、懸濁液の安定性、タンパク質電気泳動移動度

ITC

等温滴定型カロリメトリー

MicroCal ITC

結合親和性、溶液中の分子反応の熱力学

.dsc

示差走査熱型カロリメトリー

Microcal DSC

大きな分子の変性(アンフォールド)、高分子の安定性

GCI

グレーティング結合干渉法

Creoptix WAVEsystem

リアルタイムの結合反応速度と親和性、流体工学によるラベルフリー

IMG

全自動画像解析

モフォロギ 4

粒子の画像処理、形状、サイズの自動測定

MDRS

Morphologically-Directed Raman Spectroscopy

モフォロギ4-ID

粒子の画像処理、形状、サイズの自動測定、化学的同定、汚染物質の検出

LD

レーザ回折

マスターサイザー

スプレーテック

インシテック

Parsum

粒子サイズ、粒度分布

NTA

ナノ粒子トラッキング(軌跡)解析

ナノサイト

粒子サイズ、粒度分布、濃度

SEC または GPC

サイズ排除クロマトグラフィー/

ゲル浸透クロマトグラフィー(GPC)

OmniSEC

分子サイズ、分子量、オリゴマー状態、ポリマーまたはタンパク質のサイズ、分子構造

SPE

融合によるサンプル調製

Le Neo

LeDoser

Eagon 2

The OxAdvanced

M4

rFusion

XRF用溶融ビーズ試料の調製、ICP用過酸化物溶液の調製、ビーズ作製用のフラックス計量

UV/Vis/NIR/ SWIR

紫外線/可視/近赤外線/短波赤外線分光分析

LabSpec

FieldSpec

TerraSpec

QualitySpec

材料識別と分析、水分、鉱物、炭素の含有量。航空および衛星分光分析技術の地上検証。

PFTNA

パルス高速熱中性子活性化

CNA

インライン元素分析

XRD-C

X線回折 (結晶構造解析)

Aeris

Empyrean

分子結晶構造の精製、

結晶相の同定と定量化、結晶対非結晶比、結晶子径分析

XRD-M

X線回折 (ミクロ構造)

Empyrean

X’Pert3 MRD(XL)

残留応力、テクスチャ

XRD-CT

コンピュータ断層撮影法による X線吸収画像処理

Empyrean

固体、気孔率、密度の3D画像処理

SAXS

小角X線散乱法

Empyrean

ナノ粒子、サイズ、形状、構造

GISAXS

斜入射小角X線散乱法

Empyrean

ナノ構造の薄膜と表面

HR-XRD

高解像度X線回折

Empyrean

X’Pert3 MRD(XL)

薄膜およびエピタキシャル多層、組成、ひずみ、厚さ、品質

XRR

X線反射率法

Empyrean

X’Pert3 MRD(XL)

薄膜と表面、膜厚、表面、界面粗さ

XRF

蛍光X線

Epsilon

Zetium

Axios FAST

2830 ZT

元素組成、元素濃度、微量元素、汚染物質の検出