Interested in improving your materials science research and engineering knowledge with our analytical solutions? Whether you’re a student, a researcher, or a professor, we’ve got a wide range of useful articles on the most relevant application examples of our ceramics, metals, and polymer research solutions.
The materials researched and analytical equipment used often overlaps with Chemistry and Applied Chemistry, Electronic Engineering and Semiconductor Materials, and Physics and Applied Physics, so you can also find useful information on those pages. The method abbreviations are explained at the bottom of this page.
New brochure
Take a look at our new Paints and coatings brochure!
If you're working on ceramics, paints or inks, smart coatings or polymers, you might like reading about this range of analytical solutions for paints and coatings. It includes an introduction to particle measurement for pigments, elemental and phase analysis, dispersion stability, polymer molecular weight characterization, and more...
Ceramics
Ceramics can have many different structures and compositions, and they may contain any element from the periodic table. Ceramics are also studied in Chemistry and Applied Chemistry for synthesis and chemical characterization. Here are just a few examples of how our instruments are used in ceramics research. Take a look to find out more!
Ceramics | Method | Sample | Application Note Title (Link) |
---|---|---|---|
Abrasives - particle shape and size | IMG | Diamond and Abrasive grains (A2O3), (SiC), SG, and CBN | Particle shape characterization for abrasive quality control |
Colloidal processing - Zeta potential | ELS | Zirconia (m-ZrO2), Poly(ethylene glycol) (PEG), and ammonium poly(methacrylate) (APMA) in dilute KNO3 | The importance of zeta potential in ceramic processing (2) Zirconia |
Inclusions - elemental analysis | XRF | Mg, Al, Si, P, S, K, Ca, Ti, Fe, Zn, Zr, and Na | Practical small spot mapping. Analysis of a ceramic inclusion using SumXcore technology |
Nanomaterials - elemental analysis, trace elements | XRF | Ceramic nanomaterials (TiO2 and ZnO) with catalyst residues Al, Si, P, S, Cl, Fe, Zr, Nb, and Pb | Easy, cost-effective, and non‑destructive quantification of ceramic nanomaterials |
Polishing slurries - particle shape and size | IMG | Chemical-Mechanical Polishing (CMP) slurries, SiO2 or Al2O3 particles | |
Polishing slurries - Zeta potential | ELS | Chemical-Mechanical Polishing (CMP) slurries, SiO2 or Al2O3 particles | Zeta Potential Measurement of Highly Concentrated CMP Slurry Dispersions |
Processing - Zeta potential | ELS | α-alumina, Poly(ethylene glycol) (PEG), and ammonium poly(methacrylate) (APMA) | The importance of zeta potential in ceramic processing (1) Alumina |
Refractory materials - particle size | LD | Refractory suspensions (alumina, bauxite, chromite, dolomite, magnesite, silicon carbide, and zirconia mixes) | Using particle size distribution measurements to control the properties of refractory materials |
Spray-dried powders - particle shape and size | IMG | Al2O3 and W-/Ni-/Fe-based spray-dried particles | Using the Morphologi to evaluate ceramic granules produced by spray drying |
Metals
Despite its ancient origins, metals research and the study of metals and their refining (Metallurgy) is still advancing today. In particular, additive manufacturing is a hot topic for novel manufacturing of metallic and composite components. Understanding metals also requires an understanding of mining and refining – you can find out more about this on our Geological Sciences, Minerals and Mining page. Below, you can find application notes for our solutions in metals research – enjoy exploring!
Metals | Method | Sample | Application Note Title (Link) |
---|---|---|---|
Aluminum alloy production - elemental composition | XRF | Aluminum Alloys | |
Aluminum alloys - elemental composition | XRF | Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Al-Si, and Al-Mg alloys | |
Cadmium in lead and brass - elemental analysis | XRD | Cd and Pb in Brass | Analysis of Cd and Pb in Brass for RoHS, WEEE and ELV compliance |
Cast iron - carbon content | XRF | C, Si, P, S, Ti, V, Cr, Mn, Ni, Nb, and Mo in cast iron | |
Cast iron - elemental analysis | XRF | Cast Iron: Fe, Si, Mn, P, S, Cr, Mo, Ni, Cu, Ti, V, Al, and Mg | |
Chromium coatings on steel - layer thickness and composition | XRF | Cr coatings on steel | |
Chromium/zinc coatings on steel - layer thickness and composition | XRF | Cr/Zn coatings on steel | |
Copper base alloys - elemental concentration | XRF | Copper Base Alloys: Sn, Zn, Ni, Al, and Pb alloyed in Cu | |
Copper sheet - microstructure, crystallographic texture | XRD-M | Copper sheet (rolled) | Quantification texture analysis. Preferred orientation studies on rolled copper |
Ferrochrome - elemental analysis | XRF | Ferroalloys, Ferrochrome, Fe, and Cr | Analysis of FeCr alloys as fused beads using the Zetium XRF spectrometer |
Ferrosilicon alloys - elemental analysis | XRF | Fe, Si, Mg, Al, P, Ca, Ti, Cr, Mn, Ni, and Cu | Zetium - Analysis of major, minor, and trace elements in ferrosilicon alloys |
Ferrosilicon alloys - elemental analysis | SPE | Ferrosilicon Alloys, Ferroalloys, silicon, and iron | The Preparation of Ferrosilicon Alloys Samples for XRF analysis |
Ferrosilicon manganese - elemental analysis | XRF | Ferroalloys, FeSiMn alloys | Zetium - Analysis of major, minor, and trace elements in FeSiMn alloys |
Granulates - particle size | LD | Metal granulates, foil waste | |
Inconel – additive manufacturing part quality | XRD
| Metal powder and completed 3D additive manufactured components | Additive Manufacturing of Inconel 718: characterizing parts and powders |
Low alloy steel - elemental analysis | XRF | Low-Alloy Steel, high strength | |
Metals sample preparation example - Fusion for XRF | SPE | Ag, Zn, Pb, Cu, and S | |
Ni coatings on steel - layer thickness and composition | XRF | Ni coatings on steel | |
NiFeCo alloys - elemental analysis | XRF | NiFeCo alloys: Ni, Fe, Co, (Al, Si, P, S, Ti, V, Cr, Mn, Cu, Zr, Nb, Mo, Ta, and W) | Zetium - NiFeCo-FP - analysis of steels, high-temperature alloys, and super alloys |
Powder, additive manufacturing - overview | LD | Metal Powders | |
Powder, atomization - particle size and shape | IMG | Atomized stainless steel | Comparing metal powders from different atomization processes using automated image analysis |
Refining Iron (blast furnace slag) - elemental composition | XRF | MgO, Al2O3, SiO2, P2O5, S, K2O, CaO, TiO2, MnO, and Fe in slag samples | Quick and precise analysis of major and minor components of slag samples prepared as pressed pellets |
Refining Iron (direct reduced) - phase identification and quantification | XRD | Iron Ore, Direct Reduced Iron, sponge iron | |
Refining, Alumina bath - phase identification and quantification | XRD | Aluminum, alumina | |
Refining, Alumina powder - particle size | LD | Alumina powder | Using real-time particle size analysis to optimize aluminum smelting |
Refining, Iron sinter - phase identification and quantification | XRD | FeO basicity - oxides | Analysis of iron sinter by X-ray diffraction reduces CO2 emissions |
Refining, Oxides - elemental composition | XRF | Oxides generally | Synthetic standard solution WROXI for the analysis of a wide range of oxides |
Solder particles - particle size and shape | IMG | Solder Particles | QA/QC characterization of solder particles using the Morphologi G3 automated image analysis system |
Stainless Steel production | XRF | Stainless Steel, C, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, and Mo | |
Steel - crystallographic phase quantification | XRD | Steel and alloys of steel | |
Steel - elemental analysis with spatial resolution | XRF | Ni, Cr, Mn, Mo, Si, and Fe | Small spot mapping – In situ elemental analysis of steel using SumXcore technology |
Steel slab - process control, elemental analysis | XRF | Slab steel formed from continuous casting, Fe, Ni, Cr, and Mo as markers for segregation | |
Tin coatings on steel - layer thickness and composition | XRF | Tin (Sn) coatings on Steel | |
Titanium alloys - elemental composition | XRF | Titanium Alloys | |
Titanium/Tin coatings on steel - layer thickness and composition | XRF | Titanium (Ti)/Tin (Sn) coatings on steel | Zetium - Analysis of thin layers of Ti/Sn coatings on steel using Stratos |
Tool steel - crystallographic phase quantification | XRD | Tool steel - retained austenite | Quantitative determination of retained austenite (RA) - ASTM E975 |
Tool steel - elemental analysis | XRF | Tool steel - Cr, Mo, Co, V, and W | |
Weld analysis - elemental analysis | XRF | Fe, Nb, Ni, Mo, and Mn | Small spot mapping - In situ characterization of weld solidification using X-ray fluorescence |
Zirconium alloy sheet - microstructure, crystallographic texture | XRD-M | Zr, Fe, and Ni - sheet used in nuclear reactor construction | |
Zn coatings on steel - layer thickness and composition | XRF | Zn coatings on Steel |
Polymers
Polymers are studied for synthesis and chemical characterization in Chemistry and Applied Chemistry, as well as for recycling along with plastics. Using polymers in Materials Science and Engineering requires an understanding of their structure-property relationships. Below, you can explore how our analytical instruments can help with polymer research. Take a look to find out more!
Polymers | Method | Sample | Application Note Title (Link) |
---|---|---|---|
Aluminum coatings on polymer film - elemental analysis | XRF | Al coatings on thin polymer films | |
Beads - particle size and shape | MDRS | Polymer beads | |
Catalyst residues - elemental analysis | XRF | Catalyst residues in polymer defects (aluminum, titanium, phosphorus, and calcium) | Fast small spot elemental mapping of defects in polymeric samples |
Flow Injection - molecular weight, intrinsic viscosity | GPC | Polypropylene (pp), ethylene-propylene rubber (EPR), and in xylene | Flow Injection Polymer Analysis for the measurement of Xylene Solubles |
Inclusions in molded polymer - elemental analysis | XRF | Titanium (Ti) in polypropylene (PP) and high-density polyethylene (HDPE) | |
Paper - elemental analysis | XRF | Silicon on paper | Quick and accurate determination of silicon on paper in only 30 seconds |
Paper-making fluids - Zeta potential | ELS | Stocks and additives, pulp, effluent, (Alum, Starch, and ash) | |
Polycaprolactone - molecular weight | GPC | Polycaprolactone (PCL) | |
Polyethylene and polypropylene - elemental analysis | XRF | Polyethylene (PE) and polypropylene (PP) | Rapid and easy identification of polyolefin types using FingerPrint software |
Polyethylene and polypropylene, trace elements - elemental analysis | XRF | Mg, Al, P, Ca, Ti, and Zn in polymers (polyethylene and polypropylene) | Zetium - Trace element analysis of Mg, Al, P, Ca, Ti, and Zn in polymers using Zetium |
Polyethylene stretched - crystal structure analysis | XRD | Polyethylene (PE) stretched | |
Polyethylene, trace elements - elemental analysis | XRF | Cr, Ni, Cu, Zn, As, Br, Cd, Ba, Hg, and Pb in polyethylene | |
Polymers for fire protection - degradation, bromination | GPC | Linear polystyrene and brominated polystyrene | |
Polymers for fire protection - elemental analysis | XRF | Halogenated compounds (for example, tetrabromobisphenol) and antimony trioxide in Acrylonitrile butadiene styrene (ABS) resins | Zetium - Analysis of flame retardants (Sb and Br) in Acrylonitrile Butadiene Styrene (ABS) resins |
Polymers, optimization for end-use – molecular weight, intrinsic viscosity | GPC | Polystyrene (PS), polymethyl methacrylate (PMMA), polycarbonate (PC), and polyvinylchloride (PVC) | |
Polymers, toxins, and safety - elemental analysis | XRF | Lead, cadmium, mercury, chromium, and bromine in polymers | Polymer analysis in accordance with ASTM F2617-15 using TOXEL and RoHS Calibration standards |
Polyolefins, toxins, and safety - elemental analysis | XRF | Cr, Br, Cd, Pb, Hg, As, Sb, Sn, and Zn in polyolefins | RoHS-2 small spot analysis of polyolefins in compliance with ASTM F2617-15 |
Polyolefins, toxins, and safety - elemental analysis | XRF | Cr, Br, Cd, Pb, Hg, As, Sb, Sn, and Zn in polyolefins | ROHS-3/WEEE/ELV analysis of polyolefins in accordance with ASTM F2617-15 |
Polypropylene film - crystal lattice expansion with temperature | XRD | Polypropylene film | |
Polyvinyl chloride, toxins, and safety - elemental analysis | XRF | Cd and Pb in polyvinyl chloride (PVC) | |
Recycling - elemental analysis | XRF | RoHS elements: Cr, Br, Hg, Pb, and Cd in Acrylonitrile-Butadiene-Styrene (ABS) and Polyvinyl Chloride (PVC) | RoHS & WEEE compliance: Analysis of Poly Vinyl Chloride and Acrylonitrile-Butadiene Styrene polymers |
약어 설명
당사의 제품 및 기술은 제품 페이지에 설명되어 있습니다. 아래에서 측정 이름 및 약어와 함께 당사 기기로 측정한 특성에 대한 빠른 참조를 찾을 수 있습니다. 자세한 내용을 보려면 각 방법을 클릭하십시오!
약어 |
방법 이름 |
기기 |
측정된 특성 |
---|---|---|---|
DLS |
Zetasizer |
분자 크기, 유체역학적 반경 RH, 입자 크기, 크기 분포, 안정성, 농도, 응집 |
|
ELS |
Zetasizer |
제타 전위, 입자 전하, 현탁액 안정성, 단백질 이동도 |
|
ITC |
MicroCal ITC |
결합 친화도, 용액 내 분자 반응의 열역학 |
|
DSC |
Microcal DSC |
대형 분자의 변성(풀림), 거대분자의 안정성 |
|
GCI |
Creoptix WAVEsystem |
실시간 결합 동역학 및 결합 친화도, 유체를 사용한 무표지 |
|
IMG |
Morphologi 4
|
입자 영상 처리, 자동 형상 및 크기 측정
|
|
MDRS |
Morphologi 4-ID |
입자 영상 처리, 자동 형상 및 크기 측정, 화학적 식별 및 오염물 검출 |
|
LD |
Mastersizer Spraytec Insitec Parsum |
입자 크기, 크기 분포 |
|
NTA |
NanoSight |
입자 크기, 크기 분포 및 농도 |
|
SEC 또는 GPC |
OMNISEC |
분자 크기, 분자량, 올리고머 상태, 폴리머 또는 단백질 크기 및 분자 구조 |
|
SPE |
Le Neo LeDoser Eagon 2 OxAdvanced M4 rFusion |
XRF를 위한 용융 비드 샘플 전처리, ICP를 위한 과산화물 용액 전처리, 비드 만들기를 위한 플럭스 칭량 |
|
UV/Vis/NIR/ SWIR |
LabSpec FieldSpec TerraSpec QualitySpec |
물질 식별 및 분석, 수분, 광물, 탄소 함량. 공기중 및 위성 분광 기법을 위한 지상 실측. |
|
PFTNA |
CNA |
인라인 원소 분석 |
|
XRD-C |
Aeris Empyrean |
분자 결정 구조 정제, 결정상 식별 및 정량화, 결정질 대 비결정질 비율, 결정질 크기 분석 |
|
XRD-M |
Empyrean X’Pert3 MRD(XL) |
잔류 응력, 텍스처 |
|
XRD-CT |
Empyrean |
고체, 다공성 및 밀도의 3D 영상 처리 |
|
SAXS |
Empyrean |
나노입자, 크기, 형태 및 구조 |
|
GISAXS |
Empyrean |
나노구조의 박막 및 표면 |
|
HR-XRD |
Empyrean X’Pert3 MRD(XL) |
박막 및 에피택시 다층, 조성, 변형, 두께, 품질 |
|
XRR |
Empyrean X’Pert3 MRD(XL) |
박막 및 표면, 막 두께, 표면 및 계면 조도 |
|
XRF |
Epsilon Zetium Axios FAST 2830 ZT |
원소 조성, 원소 농도, 미량 원소, 오염물 검출 |