Colloidal Stability & Conformational Changes in β-Lactoglobulin: Unfolding Unfolding to Self-Assembly

A detailed understanding of the mechanism of unfolding, aggregation, and associated rheological changes is developed in this study for β-Lactoglobulin at different pH values through concomitant measurements utilizing dynamic light scattering (DLS), optical microrheology, Raman spectroscopy, and differential scanning calorimetry (DSC). These findings can have important implications for the development of protein-based biotherapeutics, where the formulation viscosity, aggregation, and stability strongly affects efficacy or in foods where protein structuring is critical for functional and sensory performance.

A detailed understanding of the mechanism of unfolding, aggregation, and associated rheological changes is developed in this study for β-Lactoglobulin at different pH values through concomitant measurements utilizing dynamic light scattering (DLS), optical microrheology, Raman spectroscopy, and differential scanning calorimetry (DSC). These findings can have important implications for the development of protein-based biotherapeutics, where the formulation viscosity, aggregation, and stability strongly affects efficacy or in foods where protein structuring is critical for functional and sensory performance.

登入

還沒註冊? 创建账户