00:00:00 | Welcome |
00:00:55 | Abstract |
00:02:52 | CTN Lindhard Lecture Peter Hänggi, University of Augsburg“The Ring of Brownian motion: the good, the bad and the simply silly” |
00:03:47 | Key Historical figures |
00:04:36 | video |
00:05:11 | Common Error |
00:06:26 | Robert Brown – he lived on the outside of town* |
00:07:04 | particle |
00:07:41 | First practical usages |
00:08:44 | Théorie de la Spéculation |
00:09:07 | Gas molecules – Graham’s Law - 1848 |
00:10:08 | Application of Graham’s law |
00:11:39 | Solid-in-liquid (oh and heat) |
00:12:51 | Fick’s second law – non-steady state |
00:13:55 | Derivation of Einstein’s equation for diffusion (after Perrin) |
00:14:45 | Fick’s Laws |
00:15:16 | Fick’s Second Law |
00:15:55 | Application to topical formulations |
00:16:26 | The general gas law |
00:17:42 | Arrhenius |
00:18:09 | Importance in solid-solid diffusion |
00:18:40 | Temperature dependence – Arrhenius and van’t Hoff |
00:19:40 | Temperature dependence – Arrhenius and van’t Hoff |
00:20:22 | An aside – the importance of numbers… |
00:21:04 | The atom and molecules |
00:21:55 | Jean (Baptiste) Perrin |
00:23:14 | Perrin – 1909J B Perrin “Mouvement brownien et réalité moléculaire” Ann. Chim. Phys., 8e Ser. 18 5–114 (1909) |
00:24:04 | Particle Tracking – 1909 style |
00:24:47 | Original plotsJ B Perrin “Mouvement brownien et réalité moléculaire” Ann. Chim. Phys., 8e Ser. 18 5–114 (1909) |
00:25:13 | Perrin – but also Henri (1908) before Perrin….. |
00:25:54 | Victor Henri |
00:26:23 | Perrin’s calculations: |
00:27:39 | Solid-in-gas systems – dispersal of smoke… |
00:28:51 | Maurice de Broglie Comp. Rendus 1909 1163-1164 |
00:29:19 | Picture of Brownian motion is pretty poor! |
00:29:35 | Professor Sir Oliver Graham Sutton, C.B.E., D.Sc., F.R.S. Chairman, Atmospheric Pollution Research CommitteeSuperintendent at the Radar Research and Development Establishment, Malvern (1945-47) |
00:30:32 | von Smoluchowski - 1906 |
00:31:22 | Liquid systems – Stokes-Einstein |
00:31:55 | Einstein.. |
00:32:54 | Einstein |
00:33:29 | Solid systems |
00:34:26 | Bakerian Lecture - á la Michael Faraday |
00:35:05 | Roberts-Austen - 1896 |
00:35:38 | Roberts-Austen |
00:36:10 | Von Hevesy (Hevesy György) - George von Hevesy |
00:37:15 | Gróh/Von Hevesy Ann. Physik, 65, 216 – 222 (1921) |
00:37:44 | Rutherford to von Hevesy…and other stories |
00:39:16 | Atomic diffusion (‘doping’) in semiconductors |
00:40:01 | The semiconductor revolution |
00:40:33 | Solid-solid diffusion |
00:41:43 | paper |
00:42:05 | paper |
00:42:34 | Adhesion forces - dry millingTheoretical limit of a ball mill |
00:43:15 | NTA/PTA |
00:43:29 | NTA/PTA |
00:44:49 | Chandrasekhar - 1943 |
00:45:22 | Chandrasekhar - 1943 |
00:46:16 | Roy Pike – Nature - 1970 |
00:46:47 | Leading on to…. |
00:47:11 | Non random motion |
00:48:06 | Non-isotropic diffusion |
00:48:40 | Turiv et al |
00:48:59 | Turiv 2 |
00:49:26 | References |
00:49:59 | Thank you! |
00:50:38 | Thank you for your attentionAny questions?Please type your questions in using the Q&A panel on the right side of your screen |
00:52:01 | Contact Information |
The movement of particles in a colloidal suspension is the property we use in order to characterize the size distribution (via the Stokes-Einstein equation). We'll look at diffusion including the random Brownian motion that we require for valid application of the equation but also outlining scenarios where such random motion does not occur (e.g. in nematic liquid crystals) where other interesting information can be obtained.