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Mastersizer 3000 Customer 
Training Course
Part 1: Basic Principles and Data Quality
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Basic concepts of 
particle size
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What do we mean by a particle?
• A particle can be described as a discrete sub-portion of a 
substance, e.g.

• solid particles 
• gas bubbles
• or liquid droplets

• Laser diffraction measures particles in the size range from 
nanometres to millimetres
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Particles come in many different shapes 
(as well as sizes)

• How do we describe the size of these particles?
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Basic concepts of particle sizing

• You are given a regular-shaped object and a ruler and asked 
to give a one-number indication of its size
• What would your reply be ?
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Basic concepts of particle sizing

• You may reply: “360x140x120mm”
• Which might be correct but it is not one number.
• It is not possible to describe the size of this 3-dimensional object with a 

single number
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Concept of equivalent spherical diameters

• The rectangular box has the same volume as a sphere 
of 226µm diameter.

• The volume equivalent spherical diameter is 226μm

226μm
120μm

140μm

360μm
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How do we describe the size of 
these particles

• Equivalent spheres
• Maximum length
• Minimum length Max. length

Min. length

Max. length
Min. length
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How do we describe the size of 
these particles

• Equivalent spheres
• Maximum length
• Minimum length
• Sedimentation rate

Max. length
Min. length

Sedimentation rate

Sedimentation rate
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How do we describe the size of 
these particles

• Equivalent spheres
• Maximum length
• Minimum length
• Sedimentation rate
• Sieve aperture

Max. length
Min. length Sedimentation rate

Sieve aperture

Sieve aperture
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How do we describe the size of 
these particles

• Equivalent spheres
• Maximum length
• Minimum length
• Sedimentation rate
• Sieve aperture
• Surface area

Max. length
Min. length Sedimentation rate Sieve aperture

Surface area

Surface area
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How do we describe the size of 
these particles

• Equivalent spheres
• Maximum length
• Minimum length
• Sedimentation rate
• Sieve aperture
• Surface area
• Volume

Max. length
Min. length Sedimentation rate Sieve aperture

Surface area

Volume
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Concept of equivalent spherical diameters
• Different particle sizing techniques report different 
equivalent spherical diameters

• Dependent on the physical property that is measured
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How does laser 
diffraction work?
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Laser Diffraction – The light scattering pattern from a 
group of particles
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Laser diffraction: light scattering

Dr Kevin Powers, PERC, University of Florida

Large particles
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Laser diffraction: light scattering

Dr Kevin Powers, PERC, University of Florida

Large particles

Submicron 
particles
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Measurement cell Focal plane 
detectors

Side scatter 
detectors

Back scatter 
detectors

633nm red 
laser

Precision 
folded optics

Mastersizer 3000 optics: red light measurements
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Mastersizer 3000 optics: blue light measurements

470nm blue 
light source

Side scatter 
detectors

Measurement cell

Back scatter 
detectors

Shorter 
wavelengths 

resolve smaller 
particles.
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Measuring the scattering data
• Angular scattering data is presented in real-time in the 
measurement manager 
• Increasing detector numbers represent increasing angle
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The measured scattering data

Increasing angle / Decreasing particle size

Red light detectors Blue light 
detectors

Extinction detectors: 
51 and 63
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The Mastersizer 3000
Typical Data Set – Coarse Particles

Large particle scattering is concentrated in the low angle 
region which corresponds to low detector numbers.
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The Mastersizer 3000
Typical Data Set – Sub-Micron Particles

Small particles scatter light at high angles which produces
data in the high detector number region.



© Malvern Panalytical 2017

Data quality
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Data quality - introduction
• Data is the fundamental light scattering caused by the 
sample

• Data is not the particle size result (.pdf)
• Data is independent of the optical model
• A stable result requires stable data
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What is good quality data?
• A good background measurement shows:

• Clean cell windows and dispersant
• Good alignment of the system
• Stability of the dispersant

• Good sample measurement should have:
• Sufficient signal to noise ratio
• Limited negative data
• No multiple scattering
• No beam steering
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Data components - types of data

Background data

Sample data



© Malvern Panalytical 2017

Background data and system cleanliness
• A good measurement requires a clean, stable 

background 
• This should show progressive decrease across the 

detector range

Less than 20 scattering
units by detector 20

Less than 100 units 
on detector 1
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• A good clean background on a wet system should look 
very similar to this... 

• Less than 100 on detector 1
• Less than 20 on detector 20
• Decreasing curve
• Limited fluctuations

A clean background – wet system
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• The air flow causes larger fluctuations in the 
background than in a wet measurement.
• The same rules apply!

• Less than 100 on detector 1
• Less than 20 on detector 20
• Decreasing curve
• Limited fluctuations

A clean background – dry system
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Poor background - material stuck to the windows
• A  ‘hump’ in the data is often an indication of material 
stuck to the cell windows

• All scattered light is included in the measurement

Dirty Windows?
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Poor background – contaminated dispersant
• Intermittent peaks in the background may be 
caused by contaminants in the dispersant

• Particulates (rinse the dispersion unit)
• Bubbles (degas dispersant, stop-start pump)
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Poor background – misaligned system.
• A spiky background signal indicates misalignment

• Detectors are arranged on opposite sides of the pinhole
• Misalignment can be caused by

• Contamination on the cell windows 
• A change in the refractive index of the dispersant

Misaligned “spiky” 
background signal
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Poor background: instability due to thermal gradients
• The dispersion unit may be warmer than the dispersant
• This temperature difference causes thermal gradients in 
the dispersant

• And high backgrounds and possible alignment problems

Thermal gradients in the 
dispersant cause changes in 

the refractive index –
increasing the background 

scattering signal
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How will I recognise thermal gradients?
• Thermal gradients cause high background signals, and large 
fluctuations

• The background signal decreases as the temperature stabilises and 
refractive index gradients disappear

• This will take longer for more volatile dispersants
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The Add Sample stage
• The background signal as been subtracted
• The live data should then show random fluctuations 
around zero
• Any ‘blocks’ of scattering will indicate dispersant 
contamination
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The Add Sample stage – negative data
• The background signal has been subtracted
• The live data should then show random fluctuations around zero

• Significant negative data suggest that the background had not stabilised 
before it was measured

• If you see this signal, re-measure the background
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Sample addition
• How much sample should be added to the dispersion unit?

• Too little:

• Signal to noise ratio may be poor, or
• Not enough sample may have been added to be representative 

of the bulk – particularly if the sample is very polydisperse
• Too much:

• Multiple scattering may affect the reported particle size 
distribution – particularly if the material is small (typically < 10 
microns)

• What is the correct obscuration range?

Obscuration = amount of laser light blocked and/or scattered by the sample, 
a guide to concentration
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(42.58 micron glass beads measured at an obscuration of only 7%)  

Note: the signal to noise ratio is usually high for large particles because 
these scatter light more strongly.

Consequently, signal-to-noise ratio is less of an issue for large particles.

High sample signal 
to background 
ratio

Maximum signal ~250units

High sample 
signal to 
background ratio

Low obscuration limit: signal to noise ratio
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Maximum signal ~8units

Low obscuration limit: signal to noise ratio
(1 micron Latex measured at an obscuration of 5% )

The signal-to-noise ratio is the amount of sample data relative to the 
background data.

Because small particles scatter light weakly, it is important that the 
background does not swamp the data signal. 

However, in this graph, the data is good since it falls where there is 
little or no overlap between the sample data and the background 
data.
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What defines the upper obscuration limit?

• If we add too much sample the results may be affected by 
multiple scattering

• This generally affects samples smaller than 10μm

Measurement cell

D
et

ec
to

r

Low angle 
detectors

High 
angle
detectors
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What defines the upper obscuration limit?

• If we add too much sample the results will be affected by 
multiple scattering

• This generally affects samples smaller than 10μm

Measurement cell

D
et

ec
to

r

Low angle 
detectors

High 
angle
detectors

Increase in 
scattering angle
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Wet analysis - multiple scattering
….leading to exaggerated fines being interpreted

› If in doubt, carry out an obscuration titration to 
determine the effect of measuring at increasing 
obscurations on the particle size distribution.
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High obscuration limit: multiple scattering
• The upper limit of the obscuration range depends on 
multiple scattering:

• Sample should be measured in the range where size is stable with 
obscuration.
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Target obscuration ranges: Wet measurements
• Very fine particles
• <1um
• <5% obscuration
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Target obscuration ranges: Wet measurements
• Fine particles
• 1-100um
• 5-10% obscuration
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Target obscuration ranges: Wet measurements
• Coarse particles
• >100um
• 10-20% obscuration
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Target obscuration ranges: Wet measurements
• Polydisperse samples
• eg 1-500um in one sample
• 10-20% obscuration
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Target obscuration ranges: Dry measurements
• Fine and cohesive powders
• 0.5 to 3-5% obscuration
• Obscuration filtering ensures that only detector scans within 
the set obscuration range are included in the results
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Target obscuration ranges: Dry measurements
• Coarse and free-flowing powders
• 0.1 to 6-8% obscuration
• Obscuration filtering ensures that only detector scans within 
the set obscuration range are included in the results
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Beam Steering
• The peak on the right of this graph suggests the presence of 

large particles.
• However this could be caused by Beam Steering, resulting from:

 Thermal instability following the use of ultrasound in solvents
 Partial dissolution of the sample in the dispersant  - changing 

its refractive index
• Or real large particles?

Are these 
real?
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Unexpected large particles: Beam steering
• Ultrasound generates heat in the dispersant

• Causing scattering signal on low angle detectors
• Particularly in more volatile dispersants

Ultrasound on

Ultrasound off
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Unexpected large particles: Beam steering
• Ultrasound generates heat in the dispersant

• Causing scattering signal on low angle detectors
• Particularly in more volatile dispersants
• This low angle scattering is interpreted as large particles

• Use a pre-measurement delay after ultrasound
• Allows thermal gradients to dissipate

Ultrasound on
Ultrasound off
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Unexpected large particles: Dry measurements
• Noise on the low angle detectors (1 to 10) can be significant 
when measuring fine particles dry

• The noise is caused by thermal fluctuations in the air
• This noise can be interpreted as large particles

• Measuring a longer background may help
• Otherwise use the fine powder analysis mode.

Noisy data
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Dry measurements: Fine powder mode
• Fine powder mode removes the first 9 detectors

• Eliminating the noise which may affect measurement of samples smaller 
than 10 micron
• And removing the large modes that it produces

• Limits the top end of the dynamic range to 600 micron

General purpose

Fine powder mode
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And when fine powder mode is not appropriate…
• … strange results can be generated.

General purpose

With fine powder mode
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Further considerations for dry measurements:
• Check:

• Are the cell windows clean?
• Is the air pressure correct?
• Does the air filter need changing?

• Is there oil droplet contamination  or moisture in the air supply? 
• Is the feeder earthed against static electricity ?
• Is the vacuum bag full?

• Is the sample flow even?
• if the sample obscuration is high, try lowering the feed rate or adjusting  the hopper 

height
• try changing the height of the hopper, different basket, ball bearing
• try a different feed tray: often one tray design will deliver a more even sample flow 

for a particular material

• Use Fine Powder Mode when material less than 10 microns  is present
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Summary - data quality
• Background data

• Make sure that:
• Material is not stuck to the cell windows
• There is no dispersant contamination
• There are no thermal gradients
• That the system has been properly aligned 

• Sample data
• Check that

• There are  reasonable signal to noise levels
• There is no multiple scattering
• There is no negative data
• There is no noisy data 
• The inner detector data is free from castellation
• There is no beam steering
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Mastersizer 3000 Part 2:

Obtaining and Understanding the Size 
Distribution
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What does laser diffraction measure?
• Laser diffraction systems measure the scattering pattern 
produced by an ensemble of particles suspended in a laser 
beam
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What does an optical model do?
• An optical model predicts the scattering pattern produced by 
a particle
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What does an optical model do?
• And can therefore predict the scattering pattern produced by 
many particles
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How do we use the optical model?

Predicts 
scattering 

pattern

Applied to 
known 
particle 

size

Optical 
model

Unknown 
particle 

size

Measures 
scattering 

pattern
Laser 

diffraction
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How do we use the optical model?

Predicts 
scattering 

pattern

Applied 
to known 
particle 

size

Optical 
model

Unknown 
particle 

size

Measures 
scattering 

pattern
Laser 

diffraction

Reports 
particle 

size

Uses 
optical 
model

Measures 
scattering 

pattern
Laser 

diffraction
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Understanding the data inversion process
Consider the following example:
• What is the answer to 6 x 7 ?

• The  answer to this is easy, it’s 42!
• Working this way through the problem gives one answer

• But what is 42?
• 21 x 2
• 40 + 2
• 126 ÷ 3
• √1764
• We see that working backwards yields many possible solutions
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How do we use the optical model?

Use optical
model
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Scattering models: Mie Theory
• Models the interaction of light with matter

• Assuming that the particles are spherical
• Assuming that it is a two phase system

• Valid for all wavelengths of light and all particle 
sizes
• Predicts the dependence of scattering intensity 
on particle size
• Predicts that secondary scattering is observed for 
small particles

‘For particles smaller than about 50μm Mie 
theory offers the best general solution’

ISO13320

http://images.google.com/imgres?imgurl=http://www.physik.uni-halle.de/%7Etpqhe/old/geschichte/personen/mie/mie.jpg&imgrefurl=http://www.physik.uni-halle.de/%7Etpqhe/old/geschichte/personen/mie/p_mie.htm&h=749&w=500&sz=57&tbnid=ekWEMc4Qu4kJ:&tbnh=139&tbnw=93&start=5&prev=/images?q=gustav+mie&hl=en&lr=&ie=UTF-8&safe=off&sa=G
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Mie Theory: Predicted scattering

Refracted light
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Mie Theory: Optical properties

Absorption

“….. the Mie theory offers the best 
general solution.”

ISO 13320: 2009
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Scattering models: Fraunhofer Approximation
• Same basic assumptions as Mie Theory

• Assuming that the particles are discs
• Assuming that it is a two phase system

• Plus the additional assumptions that
• The refractive index contrast is high (RRI > 1.73)
• The particles are opaque
• The wavelength of the light is much shorter than the particle size
• The angle of refracted light is small

• In the MS3000 software the Fraunhofer 
approximation is available as a particle type.

‘The advantage of this equation is that it is relatively simple and 
quick to calculate’. ‘The Fraunhofer approximation does not make 

use of any knowledge of the optical properties of the material’.
ISO13320

http://images.google.com/imgres?imgurl=http://academic.brooklyn.cuny.edu/history/virtual/portrait/fraunhofer.jpg&imgrefurl=http://academic.brooklyn.cuny.edu/history/virtual/portrait.htm&h=218&w=183&sz=6&tbnid=a0Tq_JmNJu8J:&tbnh=101&tbnw=85&start=12&prev=/images?q=fraunhofer&hl=en&lr=&ie=UTF-8&safe=off&sa=G
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Fraunhofer Approximation: Predicted scattering
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Comparing the results of the scattering models

‘If the Fraunhofer approximation is applied for samples containing an 
appreciable amount of small, transparent particles, a significantly larger 

amount of small particles may be calculated.’

ISO13320

Mie Theory
Fraunhofer Approximation
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Scattering models - Fraunhofer Approximation

• Disadvantages
Will produce incorrect answers when…
• Particles are <50µm
• The angle of scatter becomes large and secondary scattering occurs.
• The relative refractive index is small (<1.3) - this equates to a particle 

refractive index of 1.73 in water.

• Claimed Advantage
• “No need to know the optical properties of your material.”
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Mie vs Fraunhofer: Data quality 
advice
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Mie vs Fraunhofer: Data 
Quality advice
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Which optical properties do we need?
• To use Mie theory correctly we need to know three optical 
properties:

• The refractive index of the dispersant
• The refractive index of the sample material
• The imaginary part of the refractive index of the sample material

• Often referred to as the absorption

‘Good understanding of the influence of the complex refractive index in the light 
scattering from particles is strongly advised in order to apply the Mie theory or 

the Fraunhofer approximation appropriately.’
ISO13320
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The imaginary refractive index (or absorption)
• The absorption can be determined by looking at the 
dispersed sample under a microscope and observing its

• Shape
• Transparency 
• Internal structure

• Absorption is generally required to a factor of 10
• E.g. 0.1 or 0.01 (not 0.023)

Images of some calcium carbonate 
particles, an absorption of 0.01 would 
be used for these particles.
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Estimating absorption from particle appearance

0

0.001

0.01

0.1

1.0+

Latices

Emulsions

Slightly colored powders

Crystalline milled powders

Highly colored 
(complementary) and metal 
powders

Appearance        Absorption           Example
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Methods for determining the refractive index
• Four main routes to refractive index information

• Reference books and the internet
• Appendix of ISO 13320
• Malvern materials database
• CRC handbook
• Manufacturers label (for dispersants)
• Online info

• Refractometer measurements
• Microscope observations
• Empirical/semi-empirical models
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Online sources for refractive index information
• www.Luxpop.com

• RefractiveIndex.info

• www.Filmetrics.com/refractive-index-database

• Google Scholar

• Remember to look for a wavelength of 633nm for the red light and 470nm for 
the blue light.
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Choosing the refractive index

• You can estimate the optical properties based on typical 
values of similar materials. 

• A Refractive Index is generally only required to 2 decimal places   e.g. 1.42 not 
1.4234 

• Some families of similar materials are:
• Plastics and elastomers = 1.38 - 1.57
• Organic compounds = 1.4 - 1.7
• Inorganic salts = 1.52 - 1.8
• Metal Oxides = 1.6 - 2.5

• Use the estimated refractive index as a starting point and 
examine the fit to confirm the suitability of the value chosen.
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Assessing the data fit
• The fit report shows the measured and calculated scattering 
data
• How well these overlay is known as the data fit
• The residual quantifies how good the fit is

• Residual = area between the two curves

Residual = 0.83%
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Example - unweighted

Example - weighted

Weighted and un-weighted data fits
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Inspecting the data fit: refractive index
• A poor fit to the focal plane detectors (< 40) suggests an 
incorrect choice of refractive index

Poor fit indicates 
incorrect choice of 

refractive index
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Poor data fit here indicates 
poor choice of absorption

Poor data fit here indicates 
poor choice of absorption

Inspecting the data fit: absorption index
• Misfits to the extinction detectors indicate an incorrect 
absorption value

• 51 in the red light
• 63 in the blue light
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Residuals - good “rule of thumb”
• For most size distributions, the residual should typically be less 
than 1%
• For a good fit, the weighted and unweighted residuals should be 
of similar orders of magnitude
• A low residual is good, but the distribution should be believable

Poor agreement

Good agreement
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Residuals for very narrow distributions
• Residuals less than 1.0 are not always achievable.
• Narrow distributions can give higher residuals than expected

Residual greater than 1%

However the 
distribution is correct
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Assessing the data fit: Example
• The user is seeing an “unexpected” mode of small material. 
• The optical properties used were:

• RI:1.4, Absorption: 0.01
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Assessing the fit using 1.4/0.01
Weighted fit Weighted Residual = 3.26

Poor fit 
= incorrect RI

Un-Weighted fit Residual = 0.82
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Assessing the fit using 1.54/0.01
Weighted fit Weighted residual = 0.48

Un-Weighted fit Residual = 0.57 Improved fit
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Looking at the results

• Sample is calcium carbonate
• Reference RI is between 1.53 and 1.63
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The optical property optimiser (OPO)
• Offers a quick way to adjust optical properties and assess the fit and result
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Setting optical properties of mixtures

Consider the smallestOption 1
• Set the optical properties to suit the finest particles.

Consider the averageOption 2
• Calculate the volume-weighted average optical properties.
• Accept there may be errors in the fines.

Consider using FraunhoferOption 3
• Use the Fraunhofer Approximation.
• Accept there may be errors in the fines.

• Sensitivity to optical properties increases as particle size decreases.
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Plastisol – a real life example
• Plastisol uses include:

• Slush moulding
• Textile ink
• Binder in Electric Solid Propellant (rocket fuel)

• Plastisol is a suspension of PVC particles in a liquid 
plasticizer:

Refractive index Absorption
Blowing Agent 1.76 0.1
Filler 1.59 0.1
Pigment 2.51 0.01
Polyvinyl chloride 1.54 0.01
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Plastisol – by optical properties
1.76/0.1
Blowing 
agent

2.51/0.01
Pigment

1.59/0.1
Filler

1.54/0.01
PVC
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Plastisol – by fit and residual
1.76/0.1 
Blowing 
agent

2.51/0.01
Pigment

1.59/0.1
Filler

1.54/0.01
PVC
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Plastisol – which optical 
properties to chose?

• Similar residuals
• Unresolved peak in 1.76/0.1
• Sample knowledge:

• Blowing agent >10µm
• Pigment <1µm

• Laser diffraction knowledge:
• Sensitivity to optical properties 

increases as size decreases
• Select 2.51/0.01

1.76/0.1
Blowing 
agent

2.51/0.01
Pigment
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Plastisol Plastisol
Plastisol + residue
Plastisol + residue 
after ultrasound
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Plastisol 
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Pigment – a real life example of using the OPO
• Red ink
• Expected Dv50 120nm
• Red 1.47/0.01 & Blue 1.42/0.01 (reference)

120nm
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Looking at the fit report for the red ink
• Check fit report

Unweighted fit

Weighted fit
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Red ink
• Check fit – red light only

• Optical properties close for red light

Weighted fit
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OPO – red ink
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OPO – red ink
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OPO – red ink
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Corrected red ink result

• Dv50 now 125nm
• Close to expected value of 120nm

Original data
Final result
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Analysis models
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Analysis Models
• Using a particular analysis model enables the software to 
better interpret the light scattering data. 
• General purpose

• Suitable for the majority of samples
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Analysis Models
• Using a particular analysis model enables the software to 
better interpret the light scattering data. 
• Narrow modes

• Suitable for samples with modes spanning much less than a decade in size
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Analysis Models
• Using a particular analysis model enables the software to 
better interpret the light scattering data. 
• Verification latex

• Suitable for use with very narrow latex size standards
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Particle shape, irregular or spherical?
• Irregularly shaped small particles (<1µm) depolarise light 
more strongly in one direction
• The Non-Spherical option enables this high angle scattering 
to be correctly interpreted.
• Non-Spherical is the default option as the majority of 
materials are irregular
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Particle shape, irregular or spherical?
• Spherical samples are rarer but will include glass beads, 
latex spheres and emulsions.
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Fine powder mode
• This removes the noise on the inner detectors caused by 
temperature gradients in dry powder feeder measurements 

• Or from using ultrasound in organic solvents
• It is only used in measurements of samples which are finer 
than 600 microns
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Understanding 
the size 
distribution
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Understanding the size distribution

• The Mastersizer 3000 system is designed such that equal 
volumes of particles of different sizes produce a similar 
measured scattering intensity.

• The size distribution is reported as a volume distribution as 
this best reflects the sensitivity of the system. 

• What does this mean in practice?
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Particle size distributions
• If a sample contains particles that are all the same size 
it is described as monodisperse

• Most real world samples will contain a distribution of 
particle sizes and are described as polydisperse
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Understanding distribution weighting
• If we have a sample made up of 3 particles

• With diameters of 1, 2 and 3 units.
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Understanding distribution weighting
• If we measure the sample by a counting technique (such as 
microscopy) we get a number weighted distribution...

• And each particle contributes equally
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Understanding distribution weighting
• If we measure the sample by laser diffraction we get a 
distribution weighted by volume

• And the largest particle features most prominently

0

10

20

30

40

50

60

70

1 2 3

Fr
eq

ue
nc

y 
/ %



© Malvern Panalytical 2017

Real example of number and volume distributions
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Representing the size distribution
• The particle size distributions are plotted on a 
logarithmic axis
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Particle size distribution statistics: Median and Mode
• Median = midpoint of the distribution
• Mode = most commonly occurring size class
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PSD Statistics: Median and Mode
• If the distribution shape is more complex then these 
parameters will diverge
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• Percentiles are the size below which there is a certain 
volume of the sample
• Taken from the cumulative distribution
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PSD Statistics: Percentiles
• Percentiles can be referred to in several ways

• The 50th percentile
• Dv50
• D[v,0.5]
• 𝒙𝒙𝟎𝟎.𝟓𝟓 (in the ISO standard)

• The ‘v’ signifies that the percentile is from a volume 
distribution

• Dx50 is used when the result may be volume or number
• The Dv10 and Dv90 are also reported by default
• Other percentiles can also be reported
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PSD Statistics: Mean particle sizes
• The most familiar mean is the arithmetic mean

𝑋𝑋𝑛𝑛𝑛𝑛 = 𝐷𝐷 1,0 =
11 + 21 + 31

10 + 20 + 30
=

1 + 2 + 3
3

= 2

• Laser diffraction does not use the arithmetic mean
• As it measures the volume of particles, not the number

• Laser diffraction reports the volume weighted mean
• D[4,3]

• And surface area weighted mean
• D[3,2]
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Different types of average
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Different types of average
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PSD Statistics: Volume weighted mean
• D[4,3] is sensitive to changes in the coarse particle fraction

• Useful for monitoring milling or dispersion

D[4,3] = 11.2

D[4,3] =7.95
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PSD Statistics: Surface area weighted mean
• D[3,2] is sensitive to changes in the fine particle fraction

• Useful when surface area is important

D[3,2] = 34.4μm
D[3,2] = 59.1
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PSD Statistics: Other parameters
• Span is a measure of distribution width

Span =
(𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷𝐷𝐷𝐷𝐷)

𝐷𝐷𝐷𝐷𝐷𝐷

Span
Broad sample 8.619
Narrow sample 0.695

Span
Broad sample 8.619
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PSD Statistics: Other parameters
• The Uniformity describes distribution spread 
(has a lower value for narrower distributions)

Uniformity =
∑𝑉𝑉𝑖𝑖|𝐷𝐷𝐷𝐷𝐷𝐷 − |𝐷𝐷𝑖𝑖

𝐷𝐷𝐷𝐷𝐷𝐷∑𝑉𝑉𝑖𝑖
𝐷𝐷𝐷𝐷𝐷𝐷 = median
𝐷𝐷𝑖𝑖 = diameter of size class
𝑉𝑉𝑖𝑖 = volume in size class Span Uniformity

Broad sample 8.619 2.525
Narrow sample 0.695 0.213

Span Uniformity
Broad sample 8.619 2.525
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PSD Statistics: Other parameters
• Specific surface area

• Total surface area of particles in the sample divided by their total weight
• Requires the density of the material to be input on the Material page of the 

SOP/record (default value is 1g/cc)
• Concentration

• Volume concentration (%) is calculated using the Beer-Lambert law
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Chose a parameter that is sensitive to 
the changes you wish to monitor
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Mastersizer 3000 Part 3:
Method development for wet or liquid 
dispersions
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The purpose of method development
• A laser diffraction measurement requires

‘a representative sample, dispersed at an adequate concentration in a 
suitable liquid or gas’

<USP429>

• Method development must define appropriate
• Sampling
• Dispersion 
• Measurement conditions
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What is the biggest source of error?

Sampling

Measurement 
time

Dispersant

Optical 
properties

Choice of dispersant

Sonication 
(dispersion)

Optical 
properties

Sampling

Sampling

Measurement 
time

Dispersant

Optical 
properties

Coarse particlesFine particles
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What do we need to control when making 
measurements?

“Novices in the size measurement 
field must understand that most 

errors in size measurement arise 
through poor sampling and 
dispersion and not through 
instrument inadequacies.”

T. Allen, Advances in Ceramics, Vol 21: Ceramic 
Powder Science, page 721, The American 

Ceramic Society Inc. (1987)

Dr. Henk Merkus,  “Quality Assurance in Particle Size Measurement” 
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What happens to particles in transit?

Courtesy of A.J. Morris, M. Glover and M. Probert
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Measuring in the appropriate state of dispersion

Agglomerated Dispersed
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The wet dispersion process

Wetting the sample

Choose an appropriate 
dispersant

Carry out a beaker test

Use surfactant to improve 
the dispersion

Adding energy to improve dispersion

Stirring/pumping by the 
dispersion unit

Ultrasonics

Stabilising the dispersion

Check repeatability after 
ultrasound

Additives can be used to 
prevent re-agglomeration 
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Wetting the sample Dispersant
Water/DI water
Organic acids

Alcohols
(methanol / ethanol / isopropyl alcohol)

Simple alkanes
(hexane / heptane/ iso-octane / cyclohexane)

Long-chain alkanes and alkenes
(dodecane / mineral oils / sunflower oils / palm oil)

Polarity

Choose an 
appropriate 
dispersant

Carry out a 
beaker test

Use surfactants 
to improve 

wetting
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Wetting the sample
Choose an 
appropriate 
dispersant

Carry out a 
beaker test

Use surfactants 
to improve 

wetting

Stabilization Examples

Steric Igepal CA-360, Tween 20/80, Span 
20/80

Electrosteric Anionic: SDS (sodium dodecylfulfate), 
AOT (sodium-bis-2-
etheylhexylsulfosuccinate)

Cationic: CTAB (cetyltimethlammonium 
bromide)

DI water DI water + Igepal
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Adding energy to improve 
dispersion
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Adding energy to improve 
dispersion
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Adding energy to improve 
dispersion
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Identifying  dispersion: obscuration
• Obscuration increases as agglomerates disperse
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Dispersion trend: Particle size distribution
• Overlay the results of an ultrasound titration

• Should show gradual dispersion

Agglomerates dispersing
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Following trends on the records view: dispersion
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Dispersion trend: scattering data
• During dispersion, as the particles get smaller

• Scattering on inner detectors decreases
• Peak shifts to higher angle detectors

Trend across repeat 
measurements

Loss of scattering on 
inner detectors

Reminder: detector number increases with angle
Scattering from larger particles falls on low angle detectors
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Without 
sonication

With 
sonication

The dispersion process: 
Verification
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Stabilising the dispersion
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Stabilising the dispersion
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Admixtures – increase particle charge
• e.g. Sodium hexametaphosphate, 

sodium pyrophosphate, Ammonium 
citrate

• pH can also be important
• ‘The use of zeta potential measurements for 

improving dispersion during particle size 
determination’ (MRK373)
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How stable should the results be?
• ISO13320-1: Section 6.4

• Dv50 - 5 different readings: COV < 3%
• Dv10 and Dv90: COV < 5%
• “Below 10μm, these maximum values should be doubled.”
• Coefficient of variance = relative standard deviation (RSD)

• In ideal conditions
• 0.5% COV on parameters >1μm
• 1% COV on parameters <1μm
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Checking the stability of the results
• The live trend shows the variability of the results

• RSDs should be within ISO limits

13.3μm Av       RSD
13.3   0.465%

Av       RSD
7.32   0.11%

Av       RSD
3.77   0.0357%

7.32μm

3.77μm
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What if the results are not stable?
• If the results are not stable the sample could be:

• Dissolving
• Agglomerating
• Breaking due to excessive ultrasound
• Incomplete dispersion
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Identifying sample dissolution
• If the particles are dissolving

• The obscuration will decrease
• The fine particles will get smaller and then disappear

• The Dv10 will increase
• The coarse fraction will become more dominant

Fines dissolving
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Identifying sample dissolution: Trend view
• Plotting the obscuration and Dv10 on the live trend can help 
to identify dissolution

• Decreasing obscuration
• Increasing Dv10
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Identifying sample dissolution: Scattering data
• Scattering signal level decreases as sample dissolves

• Fewer particles scatter less light

Decrease in 
scattering signal
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Remedies for sample dissolution
• Try other dispersants

• As listed on slide 6
• Select the dispersant with the least dissolution

• Determined from repeatability
• If unavoidable, measurements can be made with slight 
dissolution

• Sample prep and measurement time must be controlled
• As a last resort, saturated solutions can be used

• Must be used carefully
• Temperature control etc.
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Identifying sample agglomeration
• If the sample is agglomerating

• A tail of large particles will appear in the distribution
• The obscuration will decrease gradually

• As individual particles become agglomerates
• Using ultrasound may remove the agglomerates

• If the sample is not chemically stable then ultrasound can cause 
agglomeration
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Identifying sample agglomeration: Trend view
• When the sample is agglomerating

• The obscuration will decrease gradually
• The Dv90 will increase 
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Identifying sample agglomeration: Size distribution
• The volume in the coarse fraction may increase
• Or the coarse fraction may increase in size

Agglomerates appearing
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Identifying sample agglomeration: Scattering data
• Scattering data will increase and move towards inner 
detectors.

Increasing scattering 
on inner detectors
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Remedies for sample agglomeration
• Surfactants or additives can be used to stabilise dispersions

• Surfactants decrease interfacial tension
• List on slide 7

• Additives increase particle charge
• Specific adsorption of ions to particle surface
• E.g. Sodium Hexametaphosphate, Sodium Pyrophosphate, Ammonium 

Citrate
• pH can also affect dispersion

• Use low concentrations, a few w/v%
• as too much can cause agglomeration 
• too  much surfactant can also cause foaming
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How do measurement conditions affect results
• Appropriate amount of sample

• Good signal to noise ratio
• Avoid multiple scattering

• Correct stir speed
• Fast enough to prevent sedimentation for large/dense particles
• Slow enough not to break emulsions

• Correct measurement duration
• Long enough to sample all of the particles in the dispersion unit
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Low obscuration limit: signal to noise ratio
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High obscuration limit: multiple scattering
• The upper limit of the obscuration range depends on 
multiple scattering:

• Sample should be measured in the range where size is stable with 
obscuration.
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Determine the correct stir speed

• For coarse or dense materials particle size will increase with 
stir speed until all particles are suspended

• A stable particle size is obtained above 2500rpm
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Determine the correct measurement duration

• For broad distributions measurement duration must be 
sufficient to sample all particles in the system.
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Affect of measurement duration on variability

• Result variability is reduced as measurement duration is 
increased

• Variability is within ISO limits when duration ≥10s
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General rules for good measurements
• Measurement and background times

• Background duration should be at least as long as the measurement duration
• Make short repeat measurements before, during and after ultrasound to 

establish dispersion
• For coarse or polydisperse materials the measurement duration may need to 

be increased to improve repeatability
• Ultrasound: generates heat in the dispersant

• In organic solvents, allow a pre-measurement delay to let this heat dissipate



© Malvern Panalytical 2017

The purpose of method development
• A laser diffraction measurement requires

‘a representative sample, dispersed at an adequate concentration in a 
suitable liquid or gas’

<USP429>

• Method development must define appropriate
• Sampling
• Dispersion 
• Measurement conditions
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Unrestricted Document

Unrestricted Document

Mastersizer 3000 Part 4:

Method development for dry powder 
dispersion



© Malvern Panalytical 2017

Unrestricted Document

Unrestricted Document

Dry powder dispersion: Mechanisms

• Importance of each mechanism depends on:
• Disperser geometry
• Flow rate or pressure drop
• Material type

• Higher impact energies may improve the dispersion 
effectiveness

• Needs to be balanced against the risk of particle break-up

Energy/aggression
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Unrestricted Document

Dry powder dispersion: Disperser design
• Standard disperser

• Straight through design 
• No direct wall impaction
• Suitable for most types of sample

• High energy disperser
• Elbow design 
• Direct impaction surface
• Suitable for robust aggregated samples
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Setting up the feed rate: 
sample tray

• General-purpose sample tray
• Designed for bulk powders
• Hopper – designed to regulate the flow of free-

flowing powders
• Hopper height can be

adjusted to control
powder flow
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Step 1: Setting up the feed rate
• Use a manual measurement to test the feed rate

• Set up a long measurement 
• This gives you time to adjust the feed rate and see the response

• Use high pressure, 4bar
• High obscurations are likely to be observed at higher pressures

• Set up obscuration range
• Coarse particles: ~0.5% to ~6% 
• Fine particles: ~0.5% to ~3% 

• Turn on obscuration filtering
• Increase the feed rate until the obscuration is in range

• And within range for the majority of the measurement
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Unrestricted Document

Unrestricted Document

Step 1: Setting up the feed rate

Set up the obscuration range
• Coarse particles: ~0.5% to ~6%
• Fine particles: ~0.5% to ~3%
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Unrestricted Document

Unrestricted Document

Step 1: Setting up the feed rate

Set up the obscuration range
• Coarse particles: ~0.5% to ~6%
• Fine particles: ~0.5% to ~3%

The measurement will start automatically once 
the obscuration stays in range for 0.5s
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Unrestricted Document

Unrestricted Document

Step 1: Setting up the feed rate

Set up the obscuration range
• Coarse particles: ~0.5% to ~6%
• Fine particles: ~0.5% to ~3%

Only include measurements when the 
obscuration is in range
• If the measurement is out of range for 10 seconds 

it will stop automatically
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Unrestricted Document

Unrestricted Document

Step 1: Setting up the feed rate
• Increase the feed rate until the obscuration is in range

• And stays within range for the majority of the measurement
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Video clip: setting up the feed rate
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Dry powder dispersion: ISO guidance
• Degree of dispersion is controlled by primary air pressure

• Monitor change in size distribution with pressure
• Carry out pressure titration – Step 2

• Check that particle comminution (milling or particle break 
up) has not occurred

• Compare dry results to a well dispersed wet measurement – Step 3
• Choose the pressure which agrees with the wet results

• Shows dispersion and not particle breakage
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Step 2: Measure a pressure titration
• Make measurements at 4, 3, 2, 1, 0.5 and 0.1 bar.
• Make repeat measurements at each pressure to check 
for sample segregation
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Step 3: Compare dry results to wet
• Low pressure dry result shows larger result

• Indicates sample is not fully dispersed



© Malvern Panalytical 2017
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Step 3: Compare dry results to wet
• High pressure shows good agreement

• Suggests the material is dispersed
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Step 4 : High energy venturi
• For robust, highly agglomerated materials the high energy 
venturi may be required.

Low pressure

High pressure
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Comparing standard and high energy venturis
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Segregation in dry measurements
• Segregation can occur with free-flowing powders with wide 
particle size distributions

• Characterized by a decrease in size over repeat measurements
• Make several quick repeat measurements at each pressure
• This can be done as part of the pressure titration



© Malvern Panalytical 2017

Unrestricted Document

Unrestricted Document

Segregation in dry measurements
• Segregation can occur with free-flowing powders with wide 
particle size distributions

• Characterized by a decrease in size over repeat measurements
• Make several quick repeat measurements at each pressure
• This can be done as part of the pressure titration

• Always measure the whole sample, either by:
• Making enough short measurements to use the whole sample and then create 

an average
• Make one long measurement long enough to use up all of the sample.
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Definitions of repeatability, reproducibility etc.
• Repeatability

• Same sample run time and time again
• Critical Factors:

• Instrument
• Dispersion i.e. any changes occurring during a measurement

• Reproducibility
• Another sample, operator, instrument, technique, day, etc……..
• Critical Factors:

• Instrument
• Dispersion
• Sampling methodology

• Robustness
• Capacity of method to remain unaffected by small, deliberate, variations in 

method parameters
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Reproducibility: Sampling 

• Reproducible results can be achieved for very small 
sample masses.
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General rules for good dry measurements
• Ensure that the obscuration filtering is on

• Eg 0.5 to 6%
• Set the feed rate to keep the obscuration in range

• Always measure the whole sample
• In several short measurements, which are averaged
• Or one long measurement

• Measure several sub samples from the same batch to 
assess reproducibility
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The purpose of method development
• A laser diffraction measurement requires

‘a representative sample, dispersed at an adequate concentration in a 
suitable liquid or gas’

<USP429>

• Method development must define appropriate
• Sampling
• Dispersion 
• Measurement conditions
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